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1. Introduction. Amongst the most irritating open problems of Waring type
is that of establishing the expected asymptotic formula for the number of repre-
sentations of an integer as the sum of five cubes and a square of natural numbers.
The technology currently available to practitioners of the Hardy-Littlewood method
fails, by only the narrowest of margins, to deliver the sought-after conclusion, and
indeed Vaughan [5] has succeeded in establishing a lower bound for the desired
number of representations that misses that expected by only a positive constant
factor. The purpose of this note is to demonstrate that, although the expected as-
ymptotic formula may occasionally fail to hold, the set of such exceptional instances
is extremely sparse.

In order to describe our conclusion, we require some notation. Let n be a large
positive number, and denote by R(n) the number of representations of n in the
form

n = x31 + x32 + · · ·+ x35 + y2, (1)

with y ∈ N and xi ∈ N (1 6 i 6 5). Also, let S(n) denote the singular series
associated with the additive representation (1), so that

S(n) =

∞∑
q=1

q∑
a=1

(a,q)=1

q−6S3(q, a)5S2(q, a)e(−na/q), (2)

where we write e(z) for exp(2πiz), and define

Sk(q, a) =

q∑
r=1

e(ark/q) (k = 2, 3). (3)

Then it is conjectured that

R(n) ∼ Γ(3/2)Γ(4/3)5

Γ(13/6)
S(n)n7/6, (4)
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and here it is worth noting that the standard theory establishes that 1� S(n)� 1
uniformly in n (see, for example, Chapter 4 of Vaughan [7]). In order to assess how
frequently the formula (4) might fail, we define an associated exceptional set as
follows. When ψ(t) is a function of a positive variable t, denote by E(N ;ψ) the
number of integers n with 1 6 n 6 N for which∣∣∣R(n)− Γ(3/2)Γ(4/3)5

Γ(13/6)
S(n)n7/6

∣∣∣ > n7/6ψ(n)−1. (5)

It is convenient here, and elsewhere, to refer to a function ψ(t) as being a func-
tion of uniform growth, when ψ(t) is a function of a positive variable t, increasing
monotonically to infinity.

Theorem 1. Suppose that ψ(t) is a function of uniform growth with ψ(t) = O(tδ),
for some sufficiently small positive number δ. Then there is a positive number c
satisfying the property that

E(N ;ψ)� ψ(N)2 exp(c logN/ log logN).

It follows, in particular, that for each positive number ε, the asymptotic formula
(4) fails to hold for at most Oε(N

ε) of the integers n with 1 6 n 6 N . No compa-
rable conclusion has been available hitherto, although a conventional application of
Bessel’s inequality would yield a similar conclusion with E(N ;ψ)� ψ(N)2N1/3+ε.
We remark that the above cited conclusion of Vaughan [5] shows that R(n)� n7/6

for all large integers n, and that Sinnadurai [4] had previously established the ex-
pected asymptotic formula for the number of representations of an integer as the
sum of a square and six cubes of natural numbers.

Our proof of the above theorem is based on the methods introduced in our
recent work on slim exceptional sets, the underlying ideas being clearly illustrated
in Wooley [8] and [10]. For the moment, it suffices to comment that our methods
avoid a conventional application of Bessel’s inequality in favour of explicit control
of an exponential sum over the exceptional set itself.

Throughout, the letter ε will denote a sufficiently small positive number. We
use � and � to denote Vinogradov’s well-known notation, implicit constants de-
pending at most on ε, unless otherwise indicated. Also, we write [z] for the largest
integer not exceeding z.

The author is grateful to Professors Jörg Brüdern and Bob Vaughan for stimu-
lating conversations and suggestions on the topic of this paper.

2. Initial salvos. Our proof of Theorem 1 employs the Hardy-Littlewood method,
and so we must introduce some notation before launching our argument in earnest.
Let N be a large positive number, and let ψ = ψ(t) be a function of the type
described in the statement of Theorem 1. We denote by Z(N) the set of inte-
gers n with N/2 < n 6 N for which the inequality (5) holds, and we abbreviate
card(Z(N)) to Z. For k = 2, 3, we write Pk = [N1/k] and define

fk(α) =
∑

16x6Pk

e(αxk).
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Then by orthogonality, for each integer n with N/2 < n 6 N , one has

R(n) =

∫ 1

0

f2(α)f3(α)5e(−nα)dα. (6)

Next we define a general Hardy-Littlewood dissection employed in our applica-
tion of the circle method. When X is a positive number with X 6

√
N , we take

N(X) to be the union of the intervals

N(q, a;X) = {α ∈ [0, 1) : |qα− a| 6 XN−1},

with 0 6 a 6 q 6 X and (a, q) = 1. Also, when X 6
√
N/2, we put K(X) =

N(2X) \ N(X). Finally, we take ν = 1/100, write M = N(Nν), and then set
m = [0, 1) \M.

It follows from the methods of Chapters 2 and 4 of Vaughan [7] that whenever
N/2 < n 6 N , one has∫

M

f2(α)f3(α)5e(−nα)dα =
Γ(3/2)Γ(4/3)5

Γ(13/6)
S(n)n7/6 +O(n7/6−2δ), (7)

where S(n) denotes the singular series defined in (2). Note here our use of the
implicit assumption that δ is a sufficiently small positive number. But for n ∈ Z(N),
it follows from (6), (7), and our assumed upper bound ψ(t) = O(tδ), that∣∣∣∫

m

f2(α)f3(α)5e(−nα)dα
∣∣∣ > 1

2n
7/6ψ(n)−1. (8)

Define the complex number ηn by taking ηn = 0 for n /∈ Z(N), and when n ∈ Z(N)
by means of the equation∣∣∣∫

m

f2(α)f3(α)5e(−nα)dα
∣∣∣ = ηn

∫
m

f2(α)f3(α)5e(−nα)dα.

Plainly, one has |ηn| = 1 whenever ηn is non-zero. Then it follows from (8) that

N7/6ψ(N)−1card(Z(N))�
∑

N/2<n6N

ηn

∫
m

f2(α)f3(α)5e(−nα)dα

=

∫
m

f2(α)f3(α)5K(−α)dα, (9)

where the exponential sum K(α) is defined by

K(α) =
∑

N/2<n6N

ηne(nα).

Our strategy is to estimate the integral on the right hand side of the relation (9),
and thereby obtain an upper bound for Z. This we achieve by performing what,
technically speaking, amounts to a sequence of pruning procedures. None of the
latter will prove demanding for experts in the circle method.



4 TREVOR D. WOOLEY

3. Pruning procedures. Before embarking on the first pruning process, we
require some additional notation. We define the function f∗2 (α) for α ∈ [0, 1) by
taking

f∗2 (α) =
√
N logN(q +N |qα− a|)−1/2, (10)

when α ∈ N(q, a;
√
N) ⊆ N(

√
N). If there is ambiguity in the choice for q and

a satisfying the latter condition, then we simply make the choice that maximises
the right hand side of (10). Notice here that by Dirichlet’s approximation theorem,

whenever α ∈ [0, 1), there exist a ∈ Z and q ∈ N with α ∈ N(q, a;
√
N), whence

[0, 1) = N(
√
N).

Lemma 1. Uniformly for α ∈ [0, 1), one has f2(α)� f∗2 (α).

Proof. An inspection of the proof of Weyl’s inequality for quadratic exponential
sums reveals that the following upper bound holds (see, for example, the proofs of
Lemmata 2.2 and 2.4 of Vaughan [7]). That is, when a ∈ Z, q ∈ N and α ∈ R
satisfy (a, q) = 1 and |α− a/q| 6 q−2, then

f2(α)� P2

√
log(2qP2)(q−1 + P−12 + qP−22 )1/2. (11)

Observe that the latter upper bound is trivial when q > P 2
2 , and thus we may as-

sume without loss of generality that q 6 N . But a standard transference argument
(see, for example, Exercise 2 of Chapter 2 of Vaughan [7]) leads from (11) to the
estimate

f2(α)�
√
N logN

(
(q +N |qα− a|)−1 +N−1/2 + (q +N |qα− a|)/N

)1/2
. (12)

Observe next that whenever 1 6 X 6
√
N and α ∈ N(q, a;X) ⊆ N(X), then one

has 1 6 q 6 X, (a, q) = 1 and |α − a/q| 6 q−1XN−1 6 q−2. Thus the hypothesis
required to obtain (12) holds, and furthermore one has q+N |qα−a| 6 2X, so that

(q +N |qα− a|)1/2
√

logN 6
√

2X logN � N1/4
√

logN,

and also√
N logN(q +N |qα− a|)−1/2 > (2X)−1/2

√
N logN � N1/4

√
logN.

We therefore conclude from (10) and (12) that whenever 1 6 X 6
√
N/2 and

α ∈ K(X), then

f2(α)�
√
N logN(q +N |qα− a|)−1/2 = f∗2 (α).

The conclusion of the lemma consequently follows from our earlier observation that
[0, 1) = N(

√
N).
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Before proceeding further, we require an approximation to f3(α) valid uniformly

for α ∈ N(
√
N). Write

v3(β) =

∫ P3

0

e(βγ3)dγ,

and recall the notation introduced in (3). We define the function f∗3 (α) for α ∈ [0, 1)
by setting

f∗3 (α) = q−1S3(q, a)v3(α− a/q), (13)

when α ∈ N(q, a;
√
N) ⊆ N(

√
N). On this occasion, if there is ambiguity concerning

the choice of q and a satisfying the latter condition, then we make a choice that
maximises the right hand side of (10). Write L = exp(logN/ log logN). Then it
follows from the argument of the proof of Theorem 4.1 of Vaughan [7] that there is

a positive number c with the property that whenever α ∈ N(q, a;
√
N) ⊆ N(

√
N),

then one has

f3(α)− q−1S3(q, a)v3(α− a/q)� Lc(q +N |qα− a|)1/2. (14)

In order to justify this bound, one must note that factors of qε that occur in the
above cited argument originate as functions of q bounded as powers of d(q), the

number of divisors of q. Since for α ∈ N(q, a;
√
N) ⊆ N(

√
N), one has q 6

√
N , it

follows that these factors of qε may be replaced here by a suitable fixed power of
L, as recorded in (14).

It is convenient at this point to introduce the mean values

I0 =

∫
m

|f2(α)f3(α)5K(α)|dα (15)

and

I1 =

∫
m

|f∗2 (α)f∗3 (α)2f3(α)3K(α)|dα. (16)

Lemma 2. For each positive number ε, one has

I0 � I1 +N7/6L2cZ1/2 +N41/36+εZ.

Proof. Observe first that, in view of Lemma 1, one has

I0 �
∫
m

|f∗2 (α)f3(α)5K(α)|dα.

But by (10), (13) and (14), whenever 1 6 X 6
√
N/2 and α ∈ K(X), one has

f∗2 (α)f3(α)� |f∗2 (α)f∗3 (α)|+ Lc
√
N logN, (17)

whence
I0 � J1 + Lc

√
N logNJ2, (18)
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where

J1 =

∫
m

|f∗2 (α)f∗3 (α)f3(α)4K(α)|dα (19)

and

J2 =

∫
m

|f3(α)4K(α)|dα. (20)

By applying Schwarz’s inequality to (20), one finds that J2 6 (J3J4)1/2, where

J3 =

∫ 1

0

|f3(α)|4dα and J4 =

∫ 1

0

|f3(α)4K(α)2|dα.

But on considering the underlying diophantine equation, it follows from Hooley [1]
that J3 � P 2

3 . Also, on employing Lemma 2.1 of Parsell [3] (see also Hooley [2]) in
order to verify Hypothesis R(11/6) of Wooley [9], it follows from the argument of
the proof of Lemma 10.3 of the latter paper that

J4 � ZP 2
3 + Z2P

11/6+ε
3 .

We therefore conclude that

J2 � P3(ZP 2
3 + Z2P

11/6+ε
3 )1/2

� Z1/2N2/3 + ZN23/36+ε. (21)

Next, applying the upper bound (17) within (19), and recalling the definition
(16), we see that

J1 � I1 + Lc
√
N logNJ5, (22)

where

J5 =

∫
m

|f∗3 (α)f3(α)3K(α)|dα.

An application of Hölder’s inequality yields the upper bound

J5 6 J
1/6
3 J

1/2
4 J

1/6
6 J

1/6
7 ,

where

J6 =

∫ 1

0

|f3(α)|2dα and J7 =

∫ 1

0

|f∗3 (α)|6dα.

But Parseval’s identity yields the estimate J6 6 P3, and the argument of the proof
of Lemma 5.1 of Vaughan [6] shows that whenever s > 5, one has∫ 1

0

|f∗3 (α)|sdα� P s−33 .
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Thus we conclude that J7 � P 3
3 , whence our earlier discussion leads to the bound

J5 � (P 2
3 )1/6(ZP 2

3 + Z2P
11/6+ε
3 )1/2(P3)1/6(P 3

3 )1/6

� Z1/2N2/3 + ZN23/36+ε. (23)

Finally, on substituting (23) into (22), and then substituting the ensuing bound
together with (21) into (18), we arrive at the upper bound

I0 � I1 + Z1/2N7/6Lc
√

logN +N41/36+2εZ.

The conclusion of the lemma therefore follows whenever N is sufficiently large, as
we may assume.

Having replaced two of the exponential sums f3(α) by their well-behaved approx-
imations f∗3 (α), the integral I1 may already be estimated directly. We summarise
the conclusion of this discussion in the following lemma.

Lemma 3. One has I1 � ZN7/6−ν/9.

Proof. On applying Hölder’s inequality to (16), we obtain

I1 6 K(0)J
1/4
8 J

3/8
9 J

3/8
10 , (24)

where

J8 =

∫ 1

0

f∗2 (α)4dα, J9 =

∫
m

|f∗3 (α)|16/3dα, J10 =

∫ 1

0

|f3(α)|8dα.

But Hua’s lemma establishes that J10 � P 5+ε
3 (see, for example, Lemma 2.5 of

Vaughan [7]), and on recalling (10), a direct calculation yields

J8 6 (N logN)2
∑

16q6
√
N

q∑
a=1

∫ ∞
−∞

(q + qN |β|)−2dβ

� N(logN)2
∑

16q6
√
N

q−1 � N(logN)3.

In order to dispose of J9, we note that the argument of the proof of Lemma 5.1 of
Vaughan [6] shows that whenever s > 5 and 1 6 X 6

√
N/2, one has∫

K(X)

|f∗3 (α)|sdα� P s−33 Xε−1/3.

Then since
m ⊆

⋃
i>1

21−i
√
N>Nν

K(2−i
√
N),

we see that ∫
m

|f∗3 (α)|16/3dα� P
7/3
3 (Nν)ε−1/3.

On substituting the above estimates into (24), we conclude that

I1 � Z(N(logN)3)1/4(N7/9−ν/3+ε)3/8(N5/3+ε)3/8,

and the conclusion of the lemma follows immediately.
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4. The coup de grâce. The time has come to deliver the mortal blow. From the
relation (9) and the definition (15), on the one hand, and Lemmata 2 and 3, on the
other, we obtain the inequality

N7/6ψ(N)−1Z � I0 � N7/6L2cZ1/2 +N7/6−ν/9Z.

Thus, whenever ψ(t) is a function of uniform growth with ψ(t) = o(tν/9), it follows
that

Z � ψ(N)L2cZ1/2,

whence Z � ψ(N)2L4c. On summing over dyadic intervals, we conclude that

E(N ;ψ)� ψ(N)2L4c logN � ψ(N)2L5c,

and this suffices to establish the conclusion of Theorem 1.
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